4-Q<u>AM</u>

 $P(e) = 3Q\left(\frac{d}{\sigma}\sqrt{T_{sym}}\right) - \frac{9}{4}Q^{2}\left(\frac{d}{\sigma}\sqrt{T_{sym}}\right)$

[11:20] Midterm #2 review (Lecture 26)

- Examine tradeoffs in implementation
 - Signal quality vs implementation complexity
 - Communication systems: Bit error rate vs. SNR
- FIR filters: always bounded-input bounded-output (BIBO) stable
- IIR filters: feedback of numerical error generally causes instability
 - Several structures: direct form, cascade of biquads, etc.
- Data conversion
 - Quantization: quantize to *B* bits, SNR = constant + 6*B*
 - Filter specifications can be derived from quantizer
- Resampling
 - Increase sampling rate: upsampler followed by lowpass filter to fill in zeros
 - Polyphase filter bank saves factor of *L* in run-time complexity
 - o Decrease sampling rate: lowpass filter followed by downsampler
 - Polyphase filter bank saves factor of *L* in run-time complexity
- Communication systems

- Transmitter processing
 - Serial to parallel -> Constellation mapping -> Pulse shaping -> Modulation
- Receiver Processing
 - Demodulation -> Matched filter -> Decision device -> Parallel to serial
 - Decision device quantizes the received symbol amplitude to a symbol of bits
- Baseband channel model
 - Input -> Time-varying gain -> FIR filter -> Additive thermal noise -> Output
- QAM signal quality
 - Lower bound on symbol error probability for rectangular constellations:
 - Assume additive Gaussian noise as only impairment
 - Based on symbol error probability for 16-QAM
 - Argument of Q function depends on d, T_{sym} , σ
 - Tradeoff between bit rate, symbol error probability, and power consumption
 - Bit rate = J f_{sym} where J is number of bits/symbol

QAM	Peak Power	Average Power	Peak-to-Average Power Ratio
4-QAM	$2d^2$	$2d^2$	1.00
8-QAM	$10d^{2}$	$6d^2$	1.67
16-QAM	$18d^{2}$	$10d^{2}$	1.80